Red de conocimientos turísticos - Estrategias turísticas - ¿Qué es el teorema de las tres perpendiculares?

¿Qué es el teorema de las tres perpendiculares?

El teorema de las tres perpendiculares se refiere a una recta en un plano que es perpendicular a la proyección de una recta diagonal que pasa por el plano sobre el plano, entonces también es perpendicular a la recta diagonal.

El teorema de las tres rectas perpendiculares es uno de los teoremas importantes de la geometría sólida. El teorema de las tres rectas perpendiculares determina que la recta oblicua es perpendicular a una recta en el plano que pasa por la proyección del plano oblicuo. recta y la relación perpendicular entre el plano y el plano Debido a que el teorema involucra tres líneas rectas que son perpendiculares a líneas rectas conocidas en el plano, se llama teorema de las tres perpendiculares.

El teorema de las tres perpendiculares describe la relación vertical entre PO (línea oblicua), AO (proyección) y a (línea recta). a y PO pueden cruzarse o tener lados diferentes. La esencia del teorema de las tres perpendiculares es el teorema de determinación de que una línea diagonal en el espacio es perpendicular a una línea recta en un plano. En cuanto a la aplicación del teorema de las tres perpendiculares, la clave es encontrar la perpendicular al plano (datum).

La proyección viene determinada por los pies verticales y oblicuos, por lo que es secundaria. De la prueba del teorema de las tres perpendiculares, obtenemos un procedimiento para demostrar a⊥b: una perpendicular, dos radios y tres demostraciones. Es decir, el primer plano de búsqueda (plano de referencia) y la segunda línea de búsqueda perpendicular al plano encuentran la línea de proyección. En este momento, a y b se convierten en una línea recta y una línea oblicua en el plano. En tercer lugar, demuestre que la línea proyectiva es perpendicular a la línea recta a, de modo que a y b son perpendiculares.

Explicación

1. ¿Las líneas son verticales (problema del plano)?

2.Métodos para demostrar que las rectas son perpendiculares: método de definición; teorema de determinación de la perpendicularidad de las rectas;

3. El teorema de las tres perpendiculares describe la relación vertical entre PO (línea oblicua), AO (proyección) y a (línea recta).

4. La línea a y PO pueden cruzarse o estar en planos diferentes.

5. La esencia del teorema de las tres perpendiculares es el teorema de determinación de que una línea diagonal en el plano es perpendicular a una línea recta en el plano.

6. Se puede utilizar para resolver problemas como ángulos formados por rectas fuera del plano y ángulos planos de ángulos diédricos.